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Abstract
Following Baxter’s method of producing Q72-operator, we construct the Q-
operator of the root-of-unity eight-vertex model for the crossing parameter
η = 2mK

N
with odd N where Q72 does not exist. We use this new Q-operator

to study the functional relations in the Fabricius–McCoy comparison between
the root-of-unity eight-vertex model and the superintegrable N-state chiral
Potts model. By the compatibility of the constructed Q-operator with the
structure of Baxter’s eight-vertex (solid-on-solid) SOS model, we verify the set
of functional relations of the root-of-unity eight-vertex model using the explicit
form of the Q-operator and fusion weights of the SOS model.

PACS numbers: 05.50.+q, 02.30.Dk, 75.10.Jm
Mathematics Subject Classification: 14K25, 39B42, 82B23

1. Introduction

It is known that the (zero-field) eight-vertex model was explicitly solved by Baxter [3, 4] by
the method of T Q-relation. Here the eight-vertex model is assumed with periodic boundary
condition and even chain-size L (this restriction applies throughout this paper unless otherwise
stated). In fact there are many Q-operators in this context [8], and the first one, discovered
by Baxter in 1972 [4] (valid for both even and odd chain-site L), denoted by Q72, was on the
special ‘root of unity’ case

2Nη72 = 2m1K + i m2K
′, i := √−1

where K,K ′ are the complete elliptic integrals, N,m1,m2 are integers, and η72 is the (crossing)
parameter of the eight-vertex model. Using the Q72-operator for m2 = 0, Fabricius and McCoy
computed the degeneracy of eight-vertex eigenvalues, a property previously found in [15, 16],
then proposed the functional equations for the eight-vertex model at η72 in [23, 24] as an
analogy with the set of functional equations known in the N-state chiral Potts model (CPM)
[10]. The Fabricius–McCoy comparison between CPM and the eight-vertex model at η72
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was further analysed about their common mathematical structures in [29, 30], where the
effort led to the discovery of Onsager-algebra symmetry of superintegrable CPM. However,
by employing the Q72-operator in the study of the special ‘root-of-unity’ eight-vertex model,
the conjectural functional relations, strongly supported by computational evidences, are valid
only in the cases for either even N or both N,m odd in the above η72-expression ([23] (3.10),
[24] (3.1), [26] (4.20)). Those cases do not include some ‘other’ important root-of-unity type
of eight-vertex model that appeared in a sequence of 1973 papers [5–7] by Baxter in the study
of the eight-vertex eigenvectors, where the parameter η satisfies the following root of unity
condition ([5] (9), [6] (6.8), [7] (1.9) or [9] (113))1:

η = 2mK

N
, N and m = odd, gcd(N,m) = 1. (1.1)

In the present work, we study the eight-vertex models with the parameter η restricted only
in the above case (1.1), which for convenience, will be loosely called the root-of-unity eight-
vertex model throughout this paper. As noted in [23], the Q72-operator and the Q-operator in
[5–7] are different; in fact, it was shown in section II of [23] that Q72-operator does not exist
when η satisfies (1.1). Thus, the quest for a proper Q-operator in accordance with ‘symmetry’
of the eight-vertex model for the root-of-unity η in (1.1) appears to be a compelling problem
for its solution.

The purpose of this paper is to construct a Q-operator of the eight-vertex model for the
parameter η in (1.1), and to conduct the functional-relation study of the eight-vertex model
as a parallel theory of the CPM. In the present paper, we provide a mathematical justification
about the conjectural functional relations of the root-of-unity eight-vertex model by the explicit
Q-operator constructed along the line, but not the same, as the Q72-operator in [4]. Indeed,
we produce the Q-operator by following the same mechanism in [32] of constructing the Q-
operator of root-of-unity six-vertex at the Nth root-of-unity anisotropic parameter q with odd N,
which can be regarded as the vanishing elliptic nome limit of (1.1). Consequently, they share
some remarkable qualitative and semi-quantitative resemblances in the functional-relation
study of root-of-unity symmetry of the theory. Furthermore, our Q-operator (more precisely,
the QR-operator) coincides with the eight-vertex Q-operator recently found by Fabricius in
[28], but with the different specified values for the free parameter, subsequently a subtle
difference occurs in the expression of Q-functional equation about the related involution (see
formula (3) and section 3 in [28], and (2.19), (2.22) of this paper). One special character of the
Q-operator in this work is that it possesses essential features appeared in Baxter’s 1973 papers
[5–7], where he invented the original techniques to convert the eight-vertex model to an ice-
type solid-on-solid (SOS) model, and derived the equation of eigenvectors by a generalized
Bethe ansatz method. It is worth noting that the three original papers by Baxter in 1973
subsequently laid the foundation to many exceptional developments in the theory of quantum
integrable systems, among which were the restricted SOS model [1], algebraic Bethe ansatz
of the eight-vertex model [34], the theory of elliptic quantum group [18, 19], and the recently
developed analytic theory of functional relations in the eight-vertex/SOS model in [11]. As
the main observation of this work, we find a Q-operator of the root-of-unity eight-vertex
model built upon the Baxter’s eigenvectors in [6] with parameters s, t taking certain special
values so that results in [5–7] can be employed in calculations when verifying the relation
between the Nth-fusion operator and Q-operator, which serves as the Q-operator-constraint
about the ‘root-of-unity’ symmetry of the theory. In this way, by assuming (as to be the
case by numerical evidences for small L) the non-singular property of a certain M(v0)-matrix

1 The letters N, L,m in this paper are the L, N,m1 in [5–7]. Here for simplicity, we consider only the case m2 = 0
in [5–7] by easier calculations of Jacobi theta functions (indeed no essential difficulties could arise for other cases by
using the modified elliptic functions in [5] (10)).
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(see (3.26) in the paper), the whole set of functional relations can be successfully justified,
much as seen mathematically in [32] for a similar discussion of the root-of-unity six-vertex
model. As a consequence, the conjectural Q-functional relation raised in [23, 24] is verified for
the root-of-unity eight-vertex model with η in (1.1), but using a different involution appeared
in the formula.

This paper is organized as follows. In section 2, we recall known results and conjectures
in the root-of-unity eight-vertex model. We first briefly review some basic facts of the eight-
vertex model in subsection 2.1. In subsection 2.2, we construct the fusion matrices from
the fused L-operators, and derive the fusion relations of the eight-vertex model. In the root-
of-unity cases, we discuss the relationship between T Q-, QQ- and Q-functional relations,
in particular the equivalent relation between the QQ- and Q-functional relations. Section 3
contains the main results of this paper about the Q-operator and the functional relations in
the root-of-unity eight-vertex model, as a parallel theory to the superintegrable CPM and
root-of-unity six-vertex model established in [30, 32]. We first briefly summarize some main
features in the eight-vertex SOS model and fusion weights in [5–7, 12, 13], needed for later
discussions. In subsection 3.1, by imitating Baxter’s method of producing Q72-operator in
[4], we derive another Q-operator, different from Q72, of the eight-vertex model with the
parameter η only in (1.1). Using results known in the eight-vertex SOS model, we then in
subsection 3.2 show the validity of functional relations using the constructed Q-operator. We
close in section 4 with some concluding remarks.

2. Eight-vertex model and the fusion operators

We start with some basic facts about the eight-vertex model in subsection 2.1. Then in
subsection 2.2, we construct the fusion matrix, and establish the fusion relations of the eight-
vertex model; for the root-of-unity eight-vertex model, we discuss the relationship between
T Q-, QQ- and Q-functional relations.

2.1. Formalism and quantum determinant of the eight-vertex model

First we review some basic notions in the eight-vertex model (for more details, see any standard
reference listed in the biography, such as [8, 34] and references therein). This also serves to
establish the notation.

The Boltzmann weights of the eight-vertex model are described by the homogeneous
coordinates of an elliptic curve in the complex projective 3-space P3:

E (= E�,γ ) : a2 + b2 − c2 − d2 = 2�(ab + cd), cd = γ ab, a : b : c : d ∈ P3 (2.1)

where �, γ ∈ C. One can parameterize the above elliptic curve in terms of Jacobi theta
functions of moduli k, k′ = (1 − k2)1/2 with the complete elliptic integrals K,K ′:

a = �(2η)�(v − η)H(v + η) = ρ(v)sn(v + η),

b = �(2η)H(v − η)�(v + η) = ρ(v)sn(v − η),

c = H(2η)�(v − η)�(v + η) = ρ(v)sn(2η),

d = H(2η)H(v − η)H(v + η) = ρ(v)k sn(2η)sn(v − η)sn(v + η),

where H(v) = ϑ1
(

v
2K

, τ
)
,�(v) = ϑ4

(
v

2K
, τ
)
, ρ(v) = k

1
2 �(2η)�(v − η)�(v + η) with

τ = iK ′
K

, and the relations

H(v − 2K) = H(−v) = −H(v), �(v − 2K) = �(−v) = �(v). (2.2)
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Hence H(v + 2Nη) = H(v),�(v + 2Nη) = �(v) for η in (1.1). The parameters
�, γ in (2.1) are given by � = cn(2η)dn(2η)

1+k sn2(2η)
, γ = k sn2(2η), ((43), (44) and (54) in [5]).

The uniformizing variable v ∈ C is called the spectral parameter. The elliptic curve E
in (2.1) is biregular to the complex torus of C quotiented by the lattice 4KZ + 2K ′Z:
E = C/(4KZ + 2K ′Z). The quotient of E by the Z2-automorphism, v �→ v − 2K ,
(corresponding to a : b : c : d �→ −a : −b : c : d), is the torus C/(2KZ + 2K ′Z). In
this paper, we shall consider the order-N automorphism U of elliptic curve E with η in (1.1),
and the elliptic function h(v):

h(v) = �(0)�(v)H(v), U : v �→ v − 2η. (2.3)

Using the elliptic coordinates a, b, c, d in (2.1), one defines the L-operator of the eight-
vertex model, which is the matrix of C2-auxiliary and C2-quantum space

L(v) =
(

L0,0 L0,1

L1,0 L1,1

)
(v), v ∈ C, (2.4)

where entries Li,j are the C2-(quantum-space) operators

L0,0 =
(

a 0
0 b

)
, L0,1 =

(
0 d

c 0

)
, L1,0 =

(
0 c

d 0

)
, L1,1 =

(
b 0
0 a

)
.

Equivalently to say, the eight-vertex weights are

R(+, +|+, +) = R(−,−|−,−) = a, R(+, +|−,−) = R(−,−|+, +) = b,

R(+,−|−, +) = R(−, +|+,−) = c, R(+,−|+,−) = R(−, +|−, +) = d.
(2.5)

The L-operator (2.4) satisfies the YB relation,

R8v(v
′ − v)

(
L(v′)

⊗
aux

1
)(

1
⊗
aux

L(v)
)

=
(

1
⊗
aux

L(v)
)(

L(v′)
⊗
aux

1
)
R8v(v

′ − v), (2.6)

with the R-matrix

R8v(v) =


a(v + η) 0 0 d(v + η)

0 b(v + η) c(v + η) 0
0 c(v + η) b(v + η) 0

d(v + η) 0 0 a(v + η)


(see, e.g., [34]). Then the monodromy matrix of chain-size L,

M(v) = L1(v) ⊗ · · · ⊗ LL(v) =
(

A(v) B(v)

C(v) D(v)

)
, (2.7)

again satisfies the YB equation (2.6). The traces of monodromy matrices

T (v) := trauxM(v) = A(v) + D(v), v ∈ C, (2.8)

form a commuting family of
L⊗ C2-operators, called the transfer matrix of the eight-vertex

model, which commutes with the spin-reflection operator R and the S-operator:

[T (v), S] = [T (v), R] = 0, where S =
L∏

�=1

σ z
� , R =

L∏
�=1

σx
� . (2.9)

As the R-matrix R8v at v = −2η is of rank-one:

R8v(−2η) = −sn(2η)


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ,
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the quantum determinant of (2.7) is defined by (2.6) with v′ = v − 2η:

detq M(v) · R8v(−2η) = R8v(−2η)
(
M(v − 2η)

⊗
aux

1
)(

1
⊗
aux

M(v)
)

=
(

1
⊗
aux

M(v)
)(

ML(v − 2η)
⊗
aux

1
)
R8v(−2η).

The above relation is equivalent to the following set of relations:

B(v)A(v − 2η) = A(v)B(v − 2η), D(v)C(v − 2η) = C(v)D(v − 2η),

A(v − 2η)C(v) = C(v − 2η)A(v), B(v − 2η)D(v) = D(v − 2η)B(v),

detq M(v) = D(v)A(v − 2η) − C(v)B(v − 2η) = A(v)D(v − 2η) − B(v)C(v − 2η)

= A(v − 2η)D(v) − C(v − 2η)B(v) = D(v − 2η)A(v) − B(v − 2η)C(v),

(2.10)

with the explicit form of quantum determinant: detq M(v) = h(v + η)Lh(v − 3η)L.

2.2. Fusion relation of the eight-vertex model

As in the six-vertex model [32], we now construct the eight-vertex fusion matrices T (J )(v)

for a non-negative integer J from the J th fused L-operator L(J)(v), which is a matrix of
C2-quantum and CJ -auxiliary space defined as follows. Denote the standard basis |±1〉 of
the C2-auxiliary space of L(v) in (2.4) by x̂ = |1〉, ŷ = | − 1〉, and its dual basis by x, y.
For non-negative integers m and n, x̂mŷn is the completely symmetric (m + n)-tensor of C2

defined by(
m + n

n

)
x̂mŷn = x̂ ⊗ · · · ⊗ x̂︸ ︷︷ ︸

m

⊗ ŷ ⊗ · · · ⊗ ŷ︸ ︷︷ ︸
n

+ all other terms by permutations,

similarly for xmyn. For J � 1, the CJ -auxiliary space is the space of completely symmetric
(J − 1)-tensors of C2 with the canonical basis e

(J )
k and the dual basis e

(J )∗
k :

e
(J )
k = x̂J−1−kŷk, e

(J )∗
k =

(
J − 1 − k

k

)
xJ−1−kyk, k = 0, . . . , J − 1. (2.11)

By the first and third relations in (2.10) for L = 1, or equivalently,

〈x2|L(v) ⊗aux L(v − 2η)|̂x ∧ ŷ〉 = 〈y2|L(v) ⊗aux L(v − 2η)|̂x ∧ ŷ〉 = 0,

〈x ⊗ y|L(v) ⊗aux L(v − 2η)|̂x ∧ ŷ〉 = 〈y ⊗ x|L(v) ⊗aux L(v − 2η)| − x̂ ∧ ŷ〉 = 1
2 detq L(v),

where x̂ ∧ ŷ = 1
2 (̂x ⊗ ŷ − ŷ ⊗ x̂), the following relations hold:〈

e
(3)∗
k

∣∣L(v) ⊗aux L(v − 2η)|̂x ⊗ ŷ〉
= 〈e(3)∗

k

∣∣L(v) ⊗aux L(v − 2η)|̂y ⊗ x̂〉 for k = 0, 1, 2.

As a consequence for an integer J � 2, and vi = x̂ or ŷ for 1 � i � J − 1, we have〈
e
(J )∗
k

∣∣L(v) ⊗aux · · · ⊗aux L(v − 2(J − 3)η) ⊗aux L(v − 2(J − 2)η))|v1 ⊗ · · · ⊗ vJ−1〉
= 〈e(J )∗

k

∣∣L(v) ⊗aux · · · ⊗aux L(v − 2(J − 3)η)

⊗aux L(v − 2(J − 2)η))|vσ1 ⊗ · · · ⊗ vσJ−1〉 (2.12)

where 0 � k � J − 1, and σ is an arbitrary permutation of {1, . . . , J − 1}. By using
the basis (2.11) of the CJ -auxiliary space, the fused L(J)-operator of eight-vertex model,
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L(J)(v) = (L(J)
k,l (v)

)
0�k,l�J−1, is defined by the following C2-(quantum-space)-operators

L
(J)
k,l (v):

L
(J)
k,l (v) =

〈
e
(J )∗
k

∣∣L(v) ⊗aux L(v − 2η) ⊗aux · · · ⊗aux L(v − 2(J − 2)η)
∣∣e(J )

l

〉∏J−3
i=0 h(v − (2i + 1)η)

. (2.13)

For J = 3, by additive formulae of theta functions ([8] (15.4.25) (15.4.26)),

�(u)�(v)�(a − u)�(a − v) − H(u)H(v)H(a − u)H(a − v)

= �(0)�(a)�(u − v)�(a − u − v),

H(v)H(a − v)�(u)�(a − u) − �(v)�(a − v)H(u)H(a − u)

= �(0)�(a)H(v − u)H(a − u − v),〈
e
(3)∗
k

∣∣L(v) ⊗aux L(v − 2η)
∣∣e(3)

l

〉
for 0 � k, l � 2 are all divisible by h(v − η). Indeed

L
(3)
k,l

(= L
(3)
k,l (v)

)
are expressed by

L
(3)
0,0 = �(2η)2

�(0)

(
H(v + η)�(v − 3η) 0

0 �(v + η)H(v − 3η)

)
,

L
(3)
0,0 ↔ L

(3)
2,2, �(v + jη) ↔ H(v + jη),

L
(3)
1,0 = H(4η)

(
0 �(v − η)2

H(v − η)2 0

)
,

L
(3)
1,0 ↔ L

(3)
1,2, �(v + jη) ↔ H(v + jη),

L
(3)
2,0 = H 2(2η)

�(0)

(
�(v + η)H(v − 3η) 0

0 H(v + η)�(v − 3η)

)
,

L
(3)
2,0 ↔ L

(3)
0,2, �(v + jη) ↔ H(v + jη),

L
(3)
0,1 = �(2η)H(2η)

�(0)

(
0 H(v + η)H(v − 3η)

�(v + η)�(v − 3η) 0

)
,

L
(3)
0,1 ↔ L

(3)
2,1, �(v + jη) ↔ H(v + jη),

L
(3)
1,1 = �(4η)

(
H(v − η)�(v − η) 0

0 �(v − η)H(v − η)

)
.

By this, all L
(J)
k,l (v) in (2.12) are elliptic functions without poles ([13] lemma 2.3.1). Using

L(J)(v) as the local operator, one defines the J th fusion matrix T (J )(v) as the trace of the
monodromy matrix:

T (J )(v) = trCJ

(
L⊗

�=1

L
(J)
� (v)

)
, L

(J )
� (v) = L(J)(v) at site �, (2.14)

which form a family of commuting operators of the quantum space
L⊗ C2 with T (2)(v) = T (v).

One can derive the recursive fusion relation among T (J )’s as the case of six-vertex model (see,

e.g., section 3 of [33]). Regard the auxiliary-space tensor C2 ⊗ CJ as a subspace of
J+1⊗ C2,

the auxiliary space CJ+1 as a subspace of C2 ⊗ CJ by identifying the basis elements:

e
(J+1)
k+1 = 1(

J

k+1

)((J − 1

k + 1

)
x̂ ⊗ e

(J )
k+1 +

(
J − 1

k

)
ŷ ⊗ e

(J )
k

)
, k = −1, . . . , J − 1.
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Denote f
(J−1)
k := x̂ ⊗ e

(J )
k+1 − ŷ ⊗ e

(J )
k for 0 � k � J − 2. Then e

(J+1)
l , f

(J−1)
k form a basis of

C2 ⊗ CJ , with the dual basis e
(J+1)∗
l , f

(J−1)∗
k expressed by

e
(J+1)∗
k+1 = x ⊗ e

(J )∗
k+1 + y ⊗ e

(J )∗
k ,

f
(J−1)∗
k = 1(

J

k+1

)((J − 1

k

)
x ⊗ e

(J )∗
k+1 −

(
J − 1

k + 1

)
y ⊗ e

(J )∗
k

)
.

One has

L
(J+1)
k,l (v) = 〈e(J+1)∗

k

∣∣L(J+1)(v)
∣∣e(J+1)

l

〉
= 1

h(v − (2J − 3)η)

〈
e
(J+1)∗
k

∣∣L(J)(v) ⊗aux L(v − 2(J − 1)η)
∣∣e(J+1)

l

〉
,〈

e
(J+1)∗
l

∣∣L(J)(v) ⊗aux L(v − 2(J − 1)η)
∣∣f (J−1)

k

〉 = 0,〈
f

(J−1)∗
k

∣∣L(J)(v) ⊗aux L(v − 2(J − 1)η)
∣∣f (J−1)

l

〉
= h(v − (2J − 1)η)

〈
e
(J−1)∗
k

∣∣L(J−1)(v)
∣∣e(J−1)

l

〉
.

Then follows the recursive fusion relation by setting T (0) = 0, T (1) = h(v + η)L:

T (J )(v)T (2)(v − 2(J − 1)η) = hL(v − (2J − 1)η)T (J−1)(v)

+ hL(v − (2J − 3)η)T (J+1)(v), J � 1. (2.15)

Since the chain-size L is even, by (2.2) one finds the periodic property of T (J ):

T (v − 2K) = T (v), T (J )(v − 2K) = T (J )(v).

The eigenvalues of T (v) are computed in [3, 4, 8] using an auxiliary Q-matrix, i.e., a
commuting family, Q(v) for v ∈ C, with [T (v),Q(v)] = 0, and the Baxter’s T Q-relation

T (v)Q(v) = hL(v − η)Q(v + 2η) + hL(v + η)Q(v − 2η),

equivalently,

T (v)Q(v) = h̃(v)LQ(U−1v) + h̃(U−1v)LQ(Uv), h̃(v) := h(v − η), (2.16)

where U is defined in (2.3). By (2.15) and (2.16) and using an induction argument, one finds
the T (J )Q-relation for J � 0:

T (J )(v) = Q(U−1v)Q(UJ−1v)

J−1∑
k=0

(̃h(Uk−1v)LQ(Uk−1v)−1Q(Ukv)−1). (2.17)

In the root-of-unity case (1.1), the relation (2.17) in turn yields the boundary fusion relation:

T (N+1)(v) = T (N−1)(Uv) + 2̃h(U−1v)L. (2.18)

Furthermore, it is expected that some Q-operator will encode essential features about the root-
of-symmetry of the eight-vertex model, much as in the study of Onsager-algebra symmetry
of superintegrable N-state CPM in [30]. Parallel to the functional equation of the chiral Potts
transfer matrix ([10] (4.40)), the root-of-unity Q-operator of eight-vertex model conjecturally
satisfies the Q-functional equation ([23] (3.10), [24](3.1)):

Q(Cv) = M0Q(v)

N−1∑
k=0

(̃h(Ukv)LQ(Ukv)−1Q(Uk+1v)−1) (2.19)

where C is an order-2 automorphism of elliptic curve E commuting with U, and M0 is some
normalized matrix independent of v. By (2.17), the Q-functional equation (2.19) is the same
as the Nth QQ-relation ([24] (3.11), [30] (44), [32] theorem 3.1)

T (N)(Uv) = M−1
0 Q(Cv)Q(v), (2.20)
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which is equivalent to either one of the following QQ-relations:

T (J )(Uv) + T (N−J )(UJ+1v) = M−1
0 Q(CUJ v)Q(v), 0 � J � N. (2.21)

In the next section, we are going to construct a Q-operator satisfying (2.20) with the elliptic
automorphism C defined by2

C : v �→ v − 2K. (2.22)

Remark. In the vanishing elliptic nome limit, K → π
2 ,K ′ → ∞, and the η in (1.1) tends

to the Nth root-of-unity q for odd N in the six-vertex model with the spectral parameter s
as the limiting value of −e

−π iv
2K . Then the automorphism (2.22) corresponds the s-involution,

C0(s) = −s, in the XXZ limit. The Q-operator of the six-vertex model at a such q, satisfying
functional relations corresponding to (2.19)–(2.21) with the involution C0, was constructed in
[32] theorem 4.2.

3. The Q-operator and verification of functional relations of the eight-vertex model
at η = 2mK

N

In this section, we discuss the functional relations of the eight-vertex model incorporated
with the root-of-unity property. First we construct in subsection 3.1 the Q-operator of the
eight-vertex model for the root-of-unity η (1.1) following the Baxter’s method of producing
Q72 in [4]. The Q-operator obtained here differs from Q72, but will accord with the root-of-
unity symmetry of the eight-vertex model in the sense that the set of functional relations is
valid for this special Q-operator. Furthermore, the structure of the Q-operator can be fed into
the scheme of Baxter’s eight-vertex SOS model in the eight-vertex-eigenvector discussion in
[5–7]. In subsection 3.2, we give a mathematical verification about the conjectured functional
relations. The methods rely on results in [5–7] about the equivalence between the eight-vertex
model and the SOS model, plus the study of fusion weights of the eight-vertex SOS model in
[12, 13], which we now briefly summarize as follows.

For the convenience, we introduce the vectors and covectors as in [6] (6.4):

|v〉 =
(

H(v)

�(v)

)
, 〈v| =

(
�(v),−H(v)

)
, v ∈ C. (3.1)

For s ∈ C and integers l ∈ Z, we define the local vector in [6] (C.13):


l,l+µ(= 
l,l+µ(v)) = |s + 2lη + µ(η − v)〉, µ = ±1, (3.2)

and the product-vector ([6] (3.2)) for a set of integers l1, . . . , lL+1 with l�+1 − l� = ±1 for
1 � � � L:

ψ(l1, . . . , lL+1)(v) = 
l1,l2 ⊗ 
l2,l3 ⊗ · · · ⊗ 
lL,lL+1 . (3.3)

In the study of eigenvectors of the eight-vertex transfer matrices, Baxter converted it to
a SOS model [5–7] so that the eight-vertex weights R(α, β|λ,µ) (2.5) are changed to the
SOS ‘lattice-weights’ W(m,m′|l, l′) by employing the local vectors 
m,l in (3.2) through the
relation∑
β,µ

R(α, β|λ,µ)(v)
l,l′(v
′)βzm′,l′(v, v′)µ =

∑
m

W(m,m′|l, l′)(v)
m,m′(v′)αzm,l(v, v′)λ,

(3.4)

2 Note that the automorphism C here differs from the C72 : v �→ v − iK ′ for the Q72-operator in [24]. Hence the
Q-operator in this paper carries a different nature from the Baxter’s Q72 in [4].
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where α, β, λ, µ = ±1, l, l′,m,m′ ∈ Z with |l − l′| = |m − m′| = |m − l| = |m′ − l′| = 1,
and zm,l are the vectors3

zl+1,l(v, v′) = |s + v − v′ + 2lη〉, zl−1,l(v, v′) = |s − v + v′ + 2lη〉.
Indeed, the Boltzmann weights W(m,m′|l, l′) for integers m,m′, l′, l are zeros except
λ = m − l, µ = m′ − l′, α = m′ − m,β = l′ − l equal to ±1, and the nonzero weights
are

W(l ± 1, l ± 2|l, l ± 1)(v) = h(v + η)

h(2η)
, (λ = µ = α = β = ±1),

W(l ± 1, l|l, l ∓ 1)(v) = h(s − K + 2(l ∓ 1)η)h(v − η)

h(2η)h(s − K + 2lη)
, (λ = µ = −α = −β = ±1),

W(l ± 1, l|l, l ± 1)(v) = h(s − K + 2lη ∓ (v − η))

h(s − K + 2lη)
, (λ = −µ = −α = β = ±1),

(3.5)

((C. 14) and (C30)–(C.33) of [6], or (2.1.4a)–(2.1.4c) of [13]4). In the case (1.1), by using
(3.4), the eight-vertex transfer matrix (2.8) transfers the vector ψ(l1, . . . , lL+1) in (3.3) to a
linear combination of product-vectors:

T (v)ψ(l1, . . . , lL+1)(v
′) =
∑
m�

{
L∏

�=1

W(m�,m�+1|l�, l�+1)(v)

}
ψ(m1, . . . , mL+1)(v

′), (3.6)

where the summation runs over integers m�’s with m�+1 = m� ± 1,m� = l� ± 1 for all �, and
lL+1 − l1 = mL+1 − m1 ≡ 0 (mod N) ((1.5), (1.9) and (1.11) of [7]).

For a positive integer J , one can derive the J th-fusion weights, W(J)(m,m′|l, l′)(v),
of the SOS model such that W(2)(m,m′|l, l′)(v) = W(m,m′|l, l′)(v) in (3.5). Indeed,
W(J)(m,m′|l, l′)(v) are zeros except λ(J ), µ(J ) = J − 1 − 2k for 0 � k � J − 1, and
|α| = |β| = 1, where λ(J ) = m − l, µ(J ) = m′ − l′, λ = m′ − m,µ = l′ − l:

α

β

λ(J ) µ(J )

l′l

m′m

By formulae (2.1.16), (2.1.20) in [13]5, the nonzero J th-fusion weights are given by

W(J)(l − 1, l|l′ − 1, l′)(v) = h(s − K + (l + l′ + J − 1)η)h(v + (l − l′ − J + 2)η)

h(2η)h(s − K + 2lη)

= h(s − K + (2l − µ(J) + J − 1)η)h(v + (µ(J ) − J + 2)η)

h(2η)h(s − K + 2lη)
,

(λ(J ) = µ(J), α = β = 1),

W(J)(l + 1, l|l′ + 1, l′)(v) = h(s − K + (l + l′ − J + 1)η)h(v + (l′ − l − J + 2)η)

h(2η)h(s − K + 2lη)

3 The zl−1,l here is in [6] (B.26) (C.13), which differs from [6] (6.5) by a factor.
4 The W11(a, b, c, d), u, λ, ξ in [13] are equal to W(a, b|d, c),

v−η
2η

, 2η, s−K
2η

here, respectively.
5 The W(J)(m, m′|l, l′)(v) here is equal to W1,J−1(m, m′, l′, l|u) in [13].
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= h(s − K + (2l − µ(J) − J + 1)η)h(v − (µ(J ) + J − 2)η)

h(2η)h(s − K + 2lη)
,

(λ(J ) = µ(J), α = β = −1),

W(J)(l + 1, l|l′ − 1, l′)(v) = h((l′ − l + J − 1)η)h(s − K + (l + l′ + J − 2)η − v)

h(2η)h(s − K + 2lη)

= h((−µ(J) + J − 1)η)h(s − K + (2l − µ(J) + J − 2)η − v)

h(2η)h(s − K + 2lη)
,

(λ(J ) = µ(J) + 2, α = −β = −1),

W(J)(l − 1, l|l′ + 1, l′)(v) = h((l − l′ + J − 1)η)h(s − K + (l + l′ − J + 2)η + v)

h(2η)h(s − K + 2lη)

= h((µ(J ) + J − 1)η)h(s − K + (2l − µ(J) − J + 2)η + v)

h(2η)h(s − K + 2lη)
,

(λ(J ) = µ(J) − 2, α = −β = 1). (3.7)

For the Nth ‘root-of-unity’ η in (1.1), as in (3.6), the J th fusion matrix T (J ) in (2.14) is related
to weights W(J)(m,m′|l, l′) through product-vectors in (3.3) by

T (J )(v)ψ(l1, . . . , lL+1)(v
′) =
∑
m�

{
L∏

�=1

W(J)(m�,m�+1|l�, l�+1)(v)

}
ψ(m1, . . . , mL+1)(v

′),

(3.8)

the summation being integers m�’s with m�+1 = m�±1,m�−l� = J −1−2k�, 0 � k� � J −1,
for all �, and lL+1 − l1 = mL+1 − m1 ≡ 0 (mod N) ([12, 13] theorem 2.3.3). Later in this
paper, we shall work on T (N) with the variable evaluating at v − η, then the corresponding
SOS weights in (3.7) become

W(N)(l − 1, l|l′ − 1, l′)(v − 2η) = h(−K + (2l − µ(N) − 1)η)h(v + µ(N)η)

h(2η)h(−K + 2lη)
,

(λ(N) = µ(N), α = β = 1),

W(N)(l + 1, l|l′ + 1, l′)(v − 2η) = h(−K + (2l − µ(N) + 1)η)h(v − µ(N)η)

h(2η)h(−K + 2lη)
,

(λ(N) = µ(N), α = β = −1),

W(N)(l + 1, l|l′ − 1, l′)(v − 2η) = h((−µ(N) − 1)η)h(−K + (2l − µ(N))η − v)

h(2η)h(−K + 2lη)
,

(λ(N) = µ(N) + 2, α = −β = −1),

W(N)(l − 1, l|l′ + 1, l′)(v − 2η) = h((µ(N) − 1)η)h(−K + (2l − µ(N))η + v)

h(2η)h(−K + 2lη)
,

(λ(N) = µ(N) − 2, α = −β = 1). (3.9)

Here we use the relation h(v + Nη) = −h(v) by the condition (1.1) on η.

3.1. The Q-operator of the eight-vertex model for η = 2mK
N

As the construction of Q72 in [4], we start with the S-, Ŝ-operator of CN -auxiliary and C2-
quantum space, S = (Si,j )i,j∈ZN

, Ŝ = (̂Si,j )i,j∈ZN
, where ZN = Z/NZ, and Si,j , Ŝi,j are
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C2-operators. Here the CN -basis of the auxiliary space is indexed by ZN . The general forms
of QR, QL-matrices are

QR = trCN

(
L⊗

�=1

S�

)
, QR = trCN

(
L⊗

�=1

Ŝ�

)
, where S�, Ŝ� = S, Ŝ at site �, (3.10)

with T QR = trC2⊗CN

(⊗L
�=1 U�

)
, QLT = trC2⊗CN

(⊗L
�=1 Û�

)
, where U�, Û� = U, Û at site �,

and U, Û are the matrices of C2 ⊗ CN -auxiliary and C2-quantum space

U =
(

L0,0S L0,1S
L1,0S L1,1S

)
, Û =

(
ŜL0,0 ŜL0,1

ŜL1,0 ŜL1,1

)
.

The operator T QR, QLT will decompose into the sum of two matrices if we can find a 2N by
2N scalar matrix M (independent of v) such that

M−1UM =
(

A 0
C D

)
, M−1ÛM =

(
Â 0
Ĉ D̂

)
. (3.11)

The above-required form is unaffected by postmultiplying M by a upper blocktriangular matrix.
Together with a similar transformation of S, we can in general choose

M =
(

IN δ

0 IN

)
, δ = dia[δ0, . . . , δN−1]. (3.12)

Hence

M−1UM =
(

L0,0S − δL1,0S, L0,0Sδ − δL1,0Sδ + L0,1S − δL1,1S
L1,0S, L1,0Sδ + L1,1S

)
.

The condition for nonzero Si,j ’s in above with vanishing upper blocktriangular matrix is ([4]
(C.10)) (

aδj − δib, d − cδiδj

c − dδiδj bδj − δia

)
Si,j = 0, i, j ∈ ZN,

which in turn yields

(a2 + b2 − c2 − d2)δiδj = ab
(
δ2
i + δ2

j

)− cd
(
1 + δ2

i δ
2
j

)
. (3.13)

If we set δi = k
1
2 sn(u), by (2.1), then follows: δj = k

1
2 sn(u ± 2η). For δi = k

1
2 sn(u), δj =

k
1
2 sn(u ± 2η), using the general formulae

sn A sn B − sn C sn D = �(0)�(A + B)H(A − D)H(B − D)

k�(A)�(B)�(C)�(D)
,

1 − k2 sn A sn B sn C sn D = �(0)�(A + B)�(A − D)�(B − D)

�(A)�(B)�(C)�(D)
,

when A + B = C + D, one can derive

Si,j (= Si,j (v)) = |u ± (η − v)〉τi,j , τi,j = (τ 1
i,j , τ

2
i,j

)
,

and the relations

(L0,0Si,j )(v) − δi(L1,0Si,j )(v) = h(v − η)
�(u ± 2η)

�(u)
Si,j (v + 2η),

δj (L1,0Si,j )(v) + (L1,1Si,j )(v) = h(v + η)
�(u)

�(u ± 2η)
Si,j (v − 2η),
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where h(v) is in (2.3). We choose s so that δi = k
1
2 sn(s +2iη), i ∈ ZN , are N-distinct diagonal

entries of δ in (3.12). Then6

Si,j (v) =
{|s + 2iη + (j − i)(η − v)〉τi,j if j − i = ±1,

0 otherwise,
(3.14)

with the arbitrary parameters τi,j . The A, D in (3.11) are related to S by

A(v) = h(v − 2η)d−1S(v + 2η)d, D(v) = h(v + 2η)dS(v − 2η)d−1,

where d is the diagonal matrix dia.[�(s),�(s + 2η), . . . ,�(s + 2(N − 1)η]. This implies

T (v)QR(v) = h(v − 2η)LQR(v + 2η) + h(v + 2η)LQR(v − 2η).

With the similar discussion for M−1ÛM, the nonzero Ŝi,j again yields the relation (3.13).
For δi = k

1
2 sn(u), δj = k

1
2 sn(u ± 2η), one arrives the expression

Ŝi,j (= Ŝi,j (v)) = τ̂i,j 〈u ± (η + v)|, τ̂i,j = (̂τi,j ;1, τ̂i,j ;2)t ,

and the relations

(̂Si,jL0,0)(v) − δi (̂Si,jL1,0)(v) = h(v + η)
�(u ± 2η)

�(u)
Ŝi,j (v − 2η),

δj (̂Si,jL1,0)(v) + (̂Si,jL1,1)(v) = h(v − η)
�(u)

�(u ± 2η)
Ŝi,j (v + 2η).

We define the δ in (3.12) by N-distinct numbers δi = k
1
2 sn(̂s + 2iη), i ∈ ZN , for some ŝ. Then

Ŝi,j are given by

Ŝi,j (v) =
{̂
τi,j 〈̂s + 2iη + (j − i)(η + v)| if j − i = ±1,

0 otherwise,
(3.15)

and related to Â, D̂ in (3.11) by

Â(v) = h(v + 2η)̂d−1Ŝ(v − 2η)̂d, D̂(v) = h(v − 2η)̂dŜ(v + 2η)̂d−1,

where d̂ = dia.[�(̂s),�(̂s + 2η), . . . , �(̂s + 2(N − 1)η]. Hence

QL(v)T (v) = h(v − 2η)LQL(v + 2η) + h(v + 2η)LQL(v − 2η).

To construct a Q(v) matrix from the QR- and QL-operator, as in [4] (C28) it suffices to find
ŝ, s in (3.15), (3.14) so that

QL(u)QR(v) = QL(v)QR(u), u, v ∈ C, (3.16)

then define

Q(v) = QR(v)QR(v0)
−1 = QL(v0)

−1QL(v), (3.17)

where v0 is a fixed value of v so that QR(v0) and QL(v0) are non-singular. Then Q(v)’s form
a commuting family and satisfy the T Q-relation (2.16) ([4] (C28) (C37) (C38)). Note that by
(3.17), the operator Q(v), defined up to a normalized factor determined by v0, is independent
of the choice of parameters τi,j , τ̂i,j , regardless of the dependence of QR, QL on τi,j , τ̂i,j .

Lemma 3.1. The relation (3.16) is valid for (̂s, s) = (2K, 0), (0, 2K) in (3.15), (3.14).

6 The Si,j of (3.14) here is equal to the (̂SR)k,l of (22) in [28], where k, l, L and the parameter t correspond to
i + 1, j + 1, N and s − η in this paper. However in the discussion of QL-operator, there is a slight difference about
the construction. Indeed, the Ŝi,j of (3.15) in this paper differs from the (̂SL)k,l in [28] (28) by the multiplication of

(0 −1
1 0 ), Ŝi,j = (̂SL)k,l (

0 −1
1 0 ), with the identification of parameters: ŝ = t + η.



The Q-operator and functional relations of the eight-vertex model 11031

Proof. Define the functions

g(v) := H(v)�(v)

(
= 1

�(0)
h(v)

)
, f (v) := 2h(v − K)

h(K)
.

Using the general formula ([6] (C.27)),

�(2A)H(2B) − H(2A)�(2B) = f (A + B)g(A − B), (3.18)

one finds the following identity for ŝ, s ∈ C and λ,µ = ±1:

〈̂s + 2iη + λ(η + u)|s + 2i ′η + µ(η − v)〉 = f

(
ŝ + s

2
+

(
i + i ′ +

λ + µ

2

)
η +

λu − µv

2

)
× g

(
ŝ − s

2
+

(
i − i ′ +

λ − µ

2

)
η +

λu + µv

2

)
. (3.19)

By using (3.19), the product of Ŝi,j (u), Si ′,j ′(v) in (3.15), (3.14) is expressed by

Ŝi,j (u)Si ′,j ′(v) = τ̂i,j τi ′,j ′f (u, v|i, j ; i ′, j ′)g(u, v|i, j ; i ′, j ′),
where

f (u, v|i, j ; i ′, j ′) := f

(
ŝ + s

2
+

(
i + i ′ +

j − i + j ′ − i ′

2

)
η +

(j − i)u − (j ′ − i ′)v
2

)
,

g(u, v|i, j ; i ′, j ′) := g

(
ŝ − s

2
+ (i − i ′)η +

(j − i − j ′ + i ′))η
2

+
(j − i)u + (j ′ − i ′)v

2

)
.

The relation (3.16) will hold if there exist auxiliary functions P(v, u|n), p(v, u|n) for n ∈ ZN

such that

Ŝi,j (u)Si ′,j ′(v)= p(v, u|i ′ + i)P (v, u|i ′ − i)̂Si,j (v)Si ′,j ′(u)P (v, u|j ′ − j)−1p(v, u|j ′ + j)−1,

(3.20)

since the product Ŝi,j (u)Si ′,j ′(v) differs only by a diagonal gauge transformation when
interchanging v and u. The condition (3.20) is equivalent to the following relations:

g(u, v|i, j ; i ′, j ′) = P(v, u|i ′ − i)g(v, u|i, j ; i ′, j ′)P (v, u|j ′ − j)−1,

j − i = −(j ′ − i ′) = ±1,

f (u, v|i, j ; i ′, j ′) = p(v, u|i ′ + i)f (u, v|i, j ; i ′, j ′)p(v, u|j ′ + j)−1,

j − i = j ′ − i ′ = ±1.

The conditions on g(u, v|i, j ; i ′, j ′) yield just one condition for P:

P(v, u|n + 2)

P (v, u|n)
= g
(

ŝ−s
2 − (n + 1)η + u−v

2

)
g
(

ŝ−s
2 − (n + 1)η + v−u

2

) for n ∈ ZN .

Since N is odd, the constraint P(v, u|n + 2N) = P(v, u|n) in turn yields ŝ − s = ±2K .
Similarly, the conditions on f (u, v|i, j ; i ′, j ′) yields the condition on p:

p(v, u|n)

p(v, u|n + 2)
= f
(

ŝ+s
2 + (n + 1)η + u−v

2

)
f
(

ŝ+s
2 + (n + 1)η + v−u

2

) for n ∈ ZN,

with ŝ + s = ±2K . Then follows the values of ŝ, s: (̂s, s) = (±2K, 0), (0,±2K). Since
Ŝi,j , Si,j are the same when adding ±4K on ŝ, s-values, only (2K, 0), (0, 2K) remains as
solutions of (̂s, s) in our discussion. �

Remark. In the above proof, we indeed show the values of ŝ, s in lemma 3.1 are the only
solutions such that the relation (3.20) holds.



11032 S-S Roan

By lemma 3.1, there are only two sets of s, ŝ-values in the discussion of Q-operator (3.17) of
the root-of-unity eight-vertex model. Moreover these two Q-operators can be converted from
one to another by the substitution of variables: v �→ v − 2K . So we need only to consider the
Q-operator (3.17) with QR, QL using the parameters

s = 0, ŝ = 2K.

Hence the Si ′,j ′ , Ŝi,j in (3.14) and (3.15) are zeros except j − i = ±1, in which cases7

Si,j (v) = |2iη + (j − i)(η − v)〉τi,j , Ŝi,j (v) = τ̂i,j 〈2K + 2iη + (j − i)(η + v)|. (3.21)

The S-operator of the CN -auxiliary and C2-quantum space is now with the form

S = (Si,j )i,j∈ZN
=



0 S0,1 0 · · · 0 S0,N−1

S1,0 0 S1,2
. . .

...

0
. . .

. . .

...
. . .

. . . 0

0
. . . SN−2,N−1

SN−1,0 0 · · · 0 SN−1,N−2 0


,

similarly for Ŝ. By (2.2), the Q-operator satisfies

Q(v − 2K) = SQ(v) = Q(v)S, (3.22)

where S is the operator in (2.9).

3.2. Mathematical verification of functional relations in the eight-vertex model for η = 2mK
N

Hereafter we set the parameter (s, ŝ) = (0, 2K) in QR, QL and local vectors in (3.2); so
Si ′,j ′ , Ŝi,j are given by (3.21). In this subsection, we show the following theorem about
functional relations of the root-of-unity eight-vertex model with η in (1.1) by using results in
the eight-vertex SOS model [5–7, 12, 13].

Theorem 3.1. The Q-operator (3.17) defined by (3.21) satisfies the Q-functional
equation (2.19), equivalent to the QQ-relations, (2.20) or (2.21), with C in (2.22).

Associated with the local vector 
l,l+µ in (3.2) with s = 0, we introduce the local covector

̂l,l+µ for l ∈ Z, µ = ±1:


l,l+µ(= 
l,l+µ(v)) = |2lη + µ(η − v)〉,

̂l,l+µ(= 
̂l,l+µ(v)) = rl,l+µ〈2K + 2lη + µ(η + v)|, rl,l+µ = µ�(0)h(K)

2h(2η)h(2(l + µ)η − K)
.

(3.23)

By (3.19), one finds(

̂l−1,l


̂l+1,l

)
(2K + v) · (
l,l+1,
l,l−1)(v) = h(v − η)

h(2η)

(
1 0
0 1

)
.

7 Note that the free parameter of the QR-operator in this paper specifies at a value different from that in [28]
section 3. In this work, the values of s, ŝ for the QR, QL-operators are distinct, unlike that in [28] (31) where the
free parameter t for QR, QL takes the same value as in [8] (9.8.38)–(9.8.42) (also see the argument in [28] section 4).
Indeed, the equality (31) in [28] (with the same t-value) provides only a sufficient condition for the commutativity
of the constructed Q-operator, which is still valid when the relation (3.16) in this paper holds for two (not necessary
equal) s, ŝ-values.
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For a set of integers l1, . . . , lL+1 with l�+1 − l� = ±1 for 1 � � � L, the product-vector in
(3.3) (for s = 0), and the product-covector are expressed by

ψ(l1, . . . , lL+1)(v) = 
l1,l2(v) ⊗ 
l2,l3(v) ⊗ · · · ⊗ 
lL,lL+1(v),

ψ̂(l1, . . . , lL+1)(v) = 
̂l1,l2(v) ⊗ 
̂l2,l3(v) ⊗ · · · ⊗ 
̂lL,lL+1(v).
(3.24)

The condition (1.1) guarantees the local vector and covector in (3.23) unchanged when
replacing l by l ± N . Hence for i, j ∈ ZN and j − i = ±1, we shall also write


i,j := 
l,l+(j−i)(= 
l′+i−j,l′), 
̂i,j := 
̂l,l+(j−i)(= 
̂l′+i−j,l′)

where l ≡ i (or l′ ≡ j) (mod N) if no confusion will arise. Similarly, one can
write ψ(i1, . . . , iL+1)(v) = ψ(l1, . . . , lL+1)(v), ψ̂(i1, . . . , iL+1)(v) = ψ̂(l1, . . . , lL+1)(v) for
i� ∈ ZN and i�+1 − i� = ±1 (1 � � � L) using an integer-representative l1 (or lL+1) of i1

(iL+1 resp.) in ZN . It is expected that product-vectors (covectors) in (3.24) for all l�’s and

v span the 2L-dimensional vector space
L⊗ C2 (the dual space

L⊗ C∗2 resp.). Equivalently,
product-vectors ψ(l1, . . . , lL+1)(v0) for l1 ∈ ZN and l�+1 − l� = ±1, span the vector space
L⊗ C2 for a generic v0; the same for

L⊗ C∗2 spanned by ψ̂(l1, . . . , lL+1)(v0)’s. We shall use v0

to denote a general value of v. For simple notations, we shall also write these vectors at v0 in
L⊗ C2 and

L⊗ C∗2 by

v(l1, . . . , lL+1) := ψ(l1, . . . , lL+1)(v0),

h(l1, . . . , lL+1) := ψ̂(l1, . . . , lL+1)(v0), l1 ∈ ZN,
(3.25)

where l2, . . . , lL+1 are integers with l�+1 − l� = ±1 for 1 � � � L. Note that the number of
vectors v(l1, . . . , lL+1)’s is strictly greater than 2N . For a general v0, we consider the following

linear transformation of
L⊗ C2 defined by the sum of products of vectors in (3.25),

M(v0) :=
∑
l1∈ZN

∑
l�∈Z

′
v(l1, . . . , lL+1)h(l1, . . . , lL+1). (3.26)

Hereafter the ‘prime’ summation means l�+1 − l� = ±1 for 1 � � � L, and l1 ≡ lL+1 (mod N).
The operator M(v0) is expected to have the rank 2N , hence to be a non-singular operator.
Unfortunately I know of no simple way to prove this condition except checking cases by direct
computations (some of which will be given in the appendix). Nevertheless we shall assume

the non-singular property of the
L⊗ C2-operator (3.26) for the rest of this paper.

We now choose some convenient parameter τi,j , τ̂i,j in (3.21) to represent the Q-operator.
Denote by Q0

R, Q0
L the operators in (3.10) using the following τi,j and τ̂i,j :

τi,j = 
̂i,j (v0), τ̂i,j = ri,j
l1,l2(v0) (j − i = ±1)

where ri,j is defined in (3.23). This means the nonzero S0
i,j and Ŝ0

i,j in (3.21) are

S0
i,j (v) = 
i,j (v)
̂i,j (v0), Ŝ0

i,j (v) = 
l1,l2(v0)
̂i,j (v), (j − i = ±1). (3.27)

In particular, the Q operator in theorem 3.1 can be expressed by

Q(v) = Q0
R(v)Q0

R(v0)
−1 = Q0

L(v0)
−1Q0

L(v).

In order to prove theorem 3.1, we need only to verify the relation (2.20), which follows from
the equality

T (N)(v − 2η)Q0
R(v0) = Q0

L(v − 2K)Q0
R(v), v ∈ C, (3.28)

with M0 = Q0
L(v0)

−1 in (2.20).

Lemma 3.2. Let 
i,j (v), 
̂i ′,j ′(v) be the local vectors in (3.23), and W(N)(m,m′|l, l′)(v−2η)

the Nth fusion weights at v − 2η in (3.9). Then for m, l ∈ Z, i, i ′ ∈ ZN such that
λ(N)(:=m − l) = N − 1 − 2k for some 0 � k � N − 1, and m ≡ i, l ≡ i ′ (mod N),
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the equality

W(N)(m,m + λ|l, l + µ)(v − 2η) = 
̂i,i+λ(v − 2K)
i ′,i ′+µ(v)

holds for λ,µ = ±1.

Proof. For i, i ′ ∈ ZN and λ,µ = ±1, by (3.19), one writes the product 
̂i,j (v − 2K)
i ′,j ′(v)

in the form


̂i,i+λ(v − 2K)
i ′,i ′+µ(v) = ri,i+λ〈2iη + λ(η + v)|2i ′η + µ(η − v)〉 = ri,i+λwi;i−i ′(λ, µ; v),

where the functions wi;n(λ, µ; v) for i, n ∈ ZN, λ, µ = ±1 are defined by

wi;n(λ, µ; v) = 2

h(K)�(0)
h

(
−K +

(
2i − n +

λ + µ

2

)
η +

λ − µ

2
v

)
×h

((
n +

λ − µ

2

)
η +

λ + µ

2
v

)
.

Comparing the values in (3.9) with 
̂i,j (v − 2K)
i ′,j ′(v) with j = i + λ, j ′ = i ′ + µ, we find

W(N)(l − 1, l|l′ − 1, l′)(v − 2η) = rl−1,lwl−1,λ(N) (1, 1; v) = 
̂i,i+1(v − 2K)
i ′,i ′+1(v),

(l − 1 ≡ i, l′ − 1 ≡ i ′; λ(N) = µ(N), α = β = 1),

W(N)(l + 1, l|l′ + 1, l′)(v − 2η) = rl+1,lwl+1,λ(N) (−1,−1; v) = 
̂i,i−1(v − 2K)
i ′,i ′−1(v),

(l + 1 ≡ i, l′ + 1 ≡ i ′; λ(N) = µ(N), α = β = −1),

W(N)(l + 1, l|l′ − 1, l′)(v − 2η) = rl+1,lwl+1,λ(N) (−1, 1; v) = 
̂i,i−1(v − 2K)
i ′,i ′+1(v),

(l + 1 ≡ i, l′ − 1 ≡ i ′; λ(N) = µ(N) + 2, α = −β = −1)

W(N)(l − 1, l|l′ + 1, l′)(v − 2η) = rl−1,lwl−1;λ(N) (1,−1; v) = 
̂i,i+1(v − 2K)
i ′,i ′−1(v),

(l − 1 ≡ i, l′ + 1 ≡ i ′; λ(N) = µ(N) − 2, α = −β = 1).

Then follow the results. �

We now show the relation (3.28). Using (3.27), one can express Q0
R(v) and Q0

L(v) in terms of
product-vectors and covectors in (3.24) and (3.25):

Q0
R(v) =

∑
i�∈ZN ,i1=iL+1

(
S0

i1,i2
S0

i2,i3
· · · S0

iL,iL+1

)
(v)

=
∑
l1∈ZN

∑
l�∈Z

′
ψ(l1, l2, . . . , lL+1)(v)h(l1, l2, . . . , lL+1),

Q0
L(v) =

∑
i�∈ZN ,i1=iL+1

(̂
S0

i1,i2
Ŝ0

i2,i3
· · · Ŝ0

iL,iL+1

)
(v)

=
∑

m1∈ZN

∑
m�∈Z

′
v(m1,m2, . . . , mL+1)ψ̂(m1,m2, . . . , mL+1)(v), (3.29)

with the prime summations as before, i.e., l�+1 − l�, m�+1 − m� = ±1 for 1 � � � L, and
l1 ≡ lL+1,m1 ≡ mL+1 (mod N). By lemma 3.2, the vectors in (3.24) have the following
product value:

ψ̂(m1,m2, . . . , mL+1)(v − 2K)ψ(l1, l2, . . . , lL+1)(v) =
L∏

�=1

W(N)(m�,m�+1|l�, l�+1)(v − 2η)

when m1 − l1 = N − 1 − 2k for some 0 � k � N − 1. Using (3.29), one finds

Q0
L(v − 2K)Q0

R(v) =
∑
l1∈ZN

∑
m�,l�∈Z

′
{

L∏
�=1

W(N)(m�,m�+1|l�, l�+1)(v − 2η)

}
× v(m1, . . . , mL+1)h(l1, . . . , lL+1). (3.30)
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The vector value of T (N)(v − 2η)Q0
R(v0) can be obtained by the relation (3.6) for J = N :∑

l1∈ZN

∑
l�∈Z

′
T (N)(v − 2η)ψ(l1, . . . , lL+1)(v0)h(l1, . . . , lL+1)

=
∑
l1∈ZN

∑
l�,m�∈Z

′
{

L∏
�=1

W(N)(m�,m�+1|l�, l�+1)(v − 2η)

}
×ψ(m1, . . . , mL+1)(v0)h(l1, . . . , lL+1),

which is the same as (3.30) by definition of v(m1, . . . , mL+1) in (3.25). This in turn yields the
equality (3.28), hence follows theorem 3.1. Note that by (3.25), M−1

0 = Q0
L(v0)

(= Q0
R(v0)

)
in (2.20) is equal to the linear transformation M(v0) in (3.26).

Denote SR the spatial translation operator of
L⊗ C2, which takes the kth column to (k+1)th

one for 1 � k � L with the identification L + 1 = 1. One has

SRψ(l1, l2, . . . , lL+1)(v) = ψ(l0, l1, . . . , lL)(v),

SRv(l1, l2, . . . , lL+1) = v(l0, l1, . . . , lL),

ψ̂(l1, l2, . . . , lL+1)(v)SR = ψ̂(l2, l3, . . . , lL+2)(v),

h(l1, l2, . . . , lL+1)SR = h(l2, l3, . . . , lL+2),

(3.31)

where l0 := l1 − lL+1 + lL, lL+2 := lL+1 + l2 − l1. By (3.29), SR commutes with Q0
R(v), Q0

L(v),
and M(v0), hence

[SR,Q(v)] = 0.

4. Concluding remarks

By a similar method of producing Q72-operator in [4], we construct another Q-operator,
different from Q72, of the eight-vertex model at the root-of-unity parameter η in (1.1) for the
functional-equation study of the eight-vertex model, as an analogy to functional relations in
the superintegrable N-state CPM. The Q-operator in this work possesses a structure compatible
with the Baxter’s eight-vertex SOS model in [5–7]. By this, using an explicit form of the
Q-operator and fusion weights of SOS model in [12, 13], we provide a rigorous mathematical
argument to show the functional relations holds under the conjectural non-singular hypothesis
(supported by computational evidence in cases) about the operator (3.26). The result could
improve our understanding about the newly found ‘root-of-unity’ symmetry of the eight-vertex
model [15, 16, 23–27]. In this paper, we study the symmetry of the eight-vertex model by
the method of functional relations, which has been the characteristic features in the theory of
CPM (see, e.g. [2, 10] and references therein). Together with results previously known in the
superintegrable CPM and the root-of-unity six-vertex models [29–33], the conclusion derived
from this work has further enhanced the ‘universal role’ of CPM among solvable lattice models
in regard to the symmetry of degenerate eigenstates. Although the analysis is done on the case
η in (1.1) here, results obtained in [23, 24, 27] for other root-of-unity cases strongly suggest
that the analogy can be extended successfully to include all cases in the eight-vertex model
with ‘root of unity’ parameter η. Further progress related to the functional relations of the
theory will enrich our knowledge about the symmetry of lattice vertex model, and also serve
to demonstrate the universal character of CPM.

In this paper, we study problems in the root-of-unity eight-vertex model by far involved
only with functional relations and the Q-operator. However the quantitative nature of the
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Q-operator in our context depends on the choice of v0 in (3.27) in performing some explicit
calculations. A convenient v0 has not been found yet, nor the suitable expression of Q-
eigenvalues as those for Q72-operator in [23] (2.22)–(2.25). These works remain to be done.
Nevertheless, it is suggested by results obtained in the six-vertex model [14, 17, 20, 21, 32, 33]
that the understanding of symmetry nature of the eight-vertex model should also be related to
the study of degenerated eigenstates using the evaluation function in [15, 16], and the elliptic
current operator recently appeared in [27]. The connection with the evaluation function is
expected to be found because the better understanding of the symmetry properties depends
on it. A process along this line is now under consideration, and further progress would be
expected.
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Appendix. Computation of the M (v0)-operator

In this appendix, we provide some computational evidences about the non-singular property
of the operator M(v0) in (3.26). By (3.31), M(v0) commutes with the spatial translation
operator SR . We shall decompose M(v0) as the sum of operators of SR-eigenspaces so that
one can perform the computations on each factor component for cases with small L. For simple
notations, we denote

V =
L⊗

C2, V ∗ =
L⊗

C2∗,

and write the standard basis elements of V and V ∗ by

|α1, . . . , αL〉 := ⊗�|α�〉 ∈ V, 〈α1, . . . , αL| := ⊗�〈α�| ∈ V ∗.

Let Vk be the SR-eigenspace of V with the eigenvalue e
2π ik
L ; hence, V has the SR-eigenspace

decomposition:

V =
L−1∑
k=0

Vk. (A.1)

For i ∈ ZN , and µ� = ±1 for 1 � � � L with
∑L

�=1 µ� ≡ 0 (mod N), we denote

ψ[i;µ1, . . . , µL](v) = ψ(l1, l2, . . . , lL+1)(v) ∈ V,

ψ̂[i;µ1, . . . , µL](v) = ψ̂(l1, l2, . . . , lL+1)(v) ∈ V ∗,

where l1 ≡ i (mod N), and l�+1 − l� = µ� for 1 � � � L. As before, CN is the space of
N-cyclic vectors w = ∑i∈ZN

wi |i〉, and CN∗ the space of dual vectors w∗ = ∑i∈ZN
w∗

i 〈i|.
We define

ψ[µ1, . . . , µL](v) :=
∑
i∈ZN

ψ[i;µ1, . . . , µL](v)〈i| ∈ V ⊗ CN∗,

ψ̂[µ1, . . . , µL](v) :=
∑
i∈ZN

|i〉ψ̂[i;µ1, . . . , µL](v) ∈ CN ⊗ V ∗.
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When v = v0, one has v(l1, . . . , lL+1) = ψ(l1, . . . , lL+1)(v0) and h(l1, . . . , lL+1) =
ψ̂(l1, . . . , lL+1)(v0) by (3.25), and correspondingly, the vector v(i;µ1, . . . , µL), covector
h(i;µ1, . . . , µL), and v(µ1, . . . , µL) ∈ V ⊗ CN∗, h(µ1, . . . , µL) ∈ CN ⊗ V ∗. For µ� = ±1
(1 � � � L) with

∑
� µ� ≡ 0 (mod N), we define

Q0
R[µ1, . . . , µL] =

∑
i∈ZN

ψ[i;µ1, . . . , µL](v)h[i;µ1, . . . , µL]

= ψ[µ1, . . . , µL](v)h[µ1, . . . , µL],

Q0
L[µ1, . . . , µL] =

∑
i∈ZN

v[i;µ1, . . . , µL]ψ̂[i;µ1, . . . , µL](v)

= v[µ1, . . . , µL]ψ̂[µ1, . . . , µL](v),

where each second expression in above is given by evaluating covectors of CN∗ on CN -vectors.
By (3.31), one finds

SRQ0
R[µ1, . . . , µL](v)S−1

R = Q0
R[µ2, . . . , µL+1](v),

SRQ0
L[µ1, . . . , µL](v)S−1

R = Q0
L[µ2, . . . , µL+1](v),

where µL+1 := µ1. Consider the group 〈SR〉 generated by SR , which acts on basis-vectors
|µ1, . . . , µL〉 with

∑
� µ� ≡ 0 (mod N). Denote by O the set of 〈SR〉-orbits, i.e. the elements

o = 〈SR〉|µ1, . . . , µL〉. Define

Q0
R,o(v) :=

∑
|µ1,...,µL〉∈o

Q0
R[µ1, . . . , µL](v), Q0

L,o(v) :=
∑

|µ1,...,µL〉∈o

Q0
L[µ1, . . . , µL](v).

Then Q0
R,o, Q0

L,o commute with SR and

Q0
R(v) =

∑
o∈O

Q0
R,o(v), Q0

L(v) =
∑
o∈O

Q0
L,o(v).

We now express Q0
R(v),o in terms of the vector-decomposition in (A.1). Assume o =

〈SR〉|µ1, . . . , µL〉, and let Lo be the positive divisor of L such that
〈
S

Lo

R

〉
consists of all

elements in 〈SR〉 which fix |µ1, . . . , µL〉. Then µ�+Lo = µ� for all �, hence
∑Lo−1

k=0 µk =
Lo

L

∑L−1
k=0 µk ≡ 0 (mod N), which implies S

Lo

R ψ[i;µ1, . . . , µL](v) = ψ[i;µ1, . . . , µL](v).
Denote by ψ[i;µ1, . . . , µL]k(v) the Vk-component of ψ[i;µ1, . . . , µL](v) in (A.1), and
define

ψ[µ1, . . . , µL]k(v) =
∑
i∈ZN

ψ[i;µ1, . . . , µL]k(v)〈i| ∈ V ⊗ CN∗.

Then ψ[i;µ1, . . . , µL]k(v) = 0 except k = a multiple of L
Lo

, therefore

ψ[i;µ1, . . . , µL](v) =
Lo−1∑
k=0

ψ[i;µ1, . . . , µL] kL
Lo

(v).

The same statement holds when replacing ψ by ψ̂ . Hence

ψ̂[µ1, . . . , µL](v) =
Lo−1∑
k=0

ψ̂[µ1, . . . , µL] kL
Lo

(v),

ψ[µ1, . . . , µL](v) =
Lo−1∑
k=0

ψ[µ1, . . . , µL] kL
Lo

(v),
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v[µ1, . . . , µL] =
Lo−1∑
k=0

v[µ1, . . . , µL] kL
Lo

,

h[µ1, . . . , µL] =
Lo−1∑
k=0

h[µ1, . . . , µL] kL
Lo

.

By

Q0
R,o(v) =

Lo−1∑
m=0

Sm
R Q0

R[µ1, . . . , µL](v)S−m
R ,

Sm
R Q0

R[µ1, . . . , µL](v)S−m
R =

Lo−1∑
k,k′=0

e
2π im(k−k′)

Lo ψ[µ1, . . . , µL] kL
Lo

(v)h[µ1, . . . , µL] k′L
Lo

,

one finds

Q0
R,o(v) = Lo

Lo−1∑
k=0

ψ[µ1, . . . , µL] kL
Lo

(v)h[µ1, . . . , µL] kL
Lo

.

Similarly, Q0
L,o(v) = Lo

∑Lo−1
k=0 v[µ1, . . . , µL] kL

Lo
ψ̂[µ1, . . . , µL] kL

Lo
(v). Set v = v0 in the

above Q0
R(v), then follows:

M(v0) =
∑
o∈O

M(v0)o, M(v0)o = Lo

Lo−1∑
k=0

v[µ1, . . . , µL] kL
Lo

h[µ1, . . . , µL] kL
Lo

. (A.2)

As the vector and covector in (3.1) are related by |v〉t = 〈−v|σx , one finds

ri;µ1,...,µL
ψ[i;µ1, . . . , µL](−v)t = ψ̂[i;µ1, . . . , µL](v)R,

where R is the spin-reflection operator in (2.9), and ri;µ1,...,µL
= ∏L

�=1 rl�,l�+1 with l� =
i +
∑�−1

k=1 µk . Hence

rµ1,...,µL
ψ[µ1, . . . , µL](−v)t = ψ̂[µ1, . . . , µL](v)R

where rµ1,...,µL
=∑i∈ZN

ri;µ1,...,µL
|i〉〈i| the non-degenerate diagonal matrix of CN . Note that

rµ1,...,µL
= rµ2,...,µL+1 , which depends only the 〈SR〉-orbit o of |µ1, . . . , µL〉. We shall also

write ro = rµ1,...,µL
. Then M(v0)o is expressed by

M(v0)o = Lo

Lo−1∑
k=0

ψ[µ1, . . . , µL] kL
Lo

(v0)roψ[µ1, . . . , µL] kL
Lo

(−v0)
tR. (A.3)

Since R commutes with SR , the above summation provides the decomposition of M(v0)o on
subspaces V kL

Lo
.

We now use the formulae (A.2) and (A.3) to determine the non-singular property of M(v0)

for L = 2, 4, where
∑

� µ� ≡ 0 (mod N) is equivalent to
∑

� µ� = 0. For convenience, we
denote

Hi(v) := H((2i + 1)η + v), �i(v) := �((2i + 1)η + v), i ∈ ZN .

Then Hi(−v) = −H−i−1(v) and �i(−v) = �−i−1(v). For L = 2,O consists of one 〈SR〉-
orbit o = {|1,−1〉, | − 1, 1〉} with Lo = 2, and the decomposition V = V0 + V1 of (A.1) is
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given by

V0 = C|1, 1〉 + C| − 1,−1〉 + C(|1,−1〉 + | − 1, 1〉), V1 = C(|1,−1〉 − | − 1, 1〉).
With (µ1, µ2) = (1,−1), one has ψ[i; 1,−1](v) = ψ(i + 1, i, i + 1)(v), equal to
Hi(−v)Hi(v)|1, 1〉+Hi(−v)�i(v)|1,−1〉+�i(−v)Hi(v)|−1, 1〉+�i(−v)�i(v)|−1,−1〉.
Using the equalities (by (3.18))

Hi(−v)�i(v) + �i(−v)Hi(v) = 2h((2i + 1)η)h(v + K)

�(0)h(K)
,

�i(v)Hi(−v) − Hi(v)�i(−v) = 2h((2i + 1)η − K)h(v)

�(0)h(K)
,

we find ψ[i; 1,−1] = ψ[i; 1,−1]0 + ψ[i; 1,−1]1 with

ψ[i; 1,−1]0(v) = Hi(−v)Hi(v)|1, 1〉 + �i(−v)�i(v)| − 1,−1〉
+

h((2i + 1)η)h(v + K)

�(0)h(K)
(|1,−1〉 + | − 1, 1〉),

ψ[i; 1,−1]1(v) = h((2i + 1)η − K)h(v)

�(0)h(K)
(|1,−1〉 − | − 1, 1〉).

Hence ψ[1,−1](v) = ψ[1,−1]0(v) + ψ[1,−1]1(v) where ψ[1,−1]k(v) = ∑i∈ZN
ψ[i; 1,

−1]k(v)〈i| for k = 0, 1. By (A.2) and (A.3),

M(v0)R = 2
∑
k=0,1

ψ[1,−1]k(v0)rψ[1,−1]k(−v0)
t

= 2
∑
k=0,1

(−1)kψ[1,−1]k(v0)rψ[1,−1]k(v0)
t ,

where r =∑i∈ZN
ri,i+1ri+1,i |i〉〈i|. The non-singular M(v0) is equivalent to the non-degenerate

bilinear form ψ[1,−1]k(v0)rψ[1,−1]k(v0)
t of Vk for k = 0, 1, which is obvious for k = 1.

For k = 0, ψ[1,−1]0(v0) defines three linear independent N-cyclic vectors, then by the
nonzero entries of r, follows the non-singular M(v0)|V0 .

We now consider the case L = 4, where the decomposition V = ∑3
k=0 Vk in (A.1) is

given by

V0 = Cv + Cv′ + Cx0 + Cy0 + Cw0 + Cu0, V1 = Cx1 + Cy1 + Cu1,

V2 = Cx2 + Cy2 + Cw1 + Cu2, V3 = Cx3 + Cy3 + Cu3,
(A.4)

where

v = |1, 1, 1, 1〉, v′ = |−1,−1,−1,−1〉,

xn =
3∑

k=0

inkSk
R|1, 1, 1,−1〉, yn =

3∑
k=0

inkSk
R|1,−1,−1,−1〉,

wm =
1∑

k=0

(−1)mkSk
R|1,−1, 1,−1〉, un =

3∑
k=0

inkSk
R|1, 1,−1,−1〉,

for 0 � n � 3,m = 0, 1. The transport of the above basis elements, denoted by v∗, v′∗, x∗
n,

y∗
n, w∗

m and u∗
n, form a basis of V ∗. The set O in (A.2) consists of two 〈SR〉-orbits:

o1 = {|1,−1, 1,−1〉, |−1, 1,−1, 1〉}, Lo1 = 2,

o2 = {|1, 1,−1,−1〉, |−1, 1, 1,−1〉, |−1,−1, 1, 1〉, |1,−1,−1, 1〉}, Lo2 = 4.

For the orbit o1 represented by |1,−1, 1,−1〉, one has ψ[i; 1,−1, 1,−1](v) = ψ(i, i+1, i, i+
1, i)(v) (= ψ(i, i + 1, i)(v) ⊗ ψ(i, i + 1, i)(v)), which is equal to
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Hi(v)2Hi(−v)2v + �i(v)2�i(−v)2v′ + Hi(−v)2Hi(v)�i(v)(|1, 1, 1,−1〉 + |1,−1, 1, 1〉)
+ Hi(−v)Hi(v)2�i(−v)(| − 1, 1, 1, 1〉 + |1, 1,−1, 1〉)
+ Hi(−v)�i(−v)�i(v)2(|1,−1,−1,−1〉 + | − 1,−1, 1,−1〉)
+ Hi(v)�i(−v)2�i(v)(| − 1, 1,−1,−1〉 + | − 1,−1,−1, 1〉)
+ Hi(−v)2�i(v)2|1,−1, 1,−1〉 + Hi(v)2�i(−v)2| − 1, 1,−1, 1〉
+ Hi(−v)Hi(v)�i(−v)�i(v)u0.

In the basis in (A.4), one finds ψ[i; 1,−1, 1,−1] = ψ[i; 1,−1, 1,−1]0 +ψ[i; 1,−1, 1,−1]2

where

ψ[i; 1,−1, 1,−1]0(v) = Hi(v)2Hi(−v)2v + �i(v)2�i(−v)2v′

+
Hi(−v)2Hi(v)�i(v) + Hi(−v)Hi(v)2�i(−v)

2
x0

+
Hi(−v)�i(−v)�i(v)2 + Hi(v)�i(−v)2�i(v)

2
y0

+
Hi(−v)2�i(v)2 + Hi(v)2�i(−v)2

2
w0 + Hi(−v)Hi(v)�i(−v)�i(v)u0,

ψ[i; 1,−1, 1,−1]2(v) = Hi(−v)2Hi(v)�i(v) − Hi(−v)Hi(v)2�i(−v)

2
x2

+
Hi(−v)�i(−v)�i(v)2 − Hi(v)�i(−v)2�i(v)

2
y2

+
Hi(−v)2�i(v)2 − Hi(v)2�i(−v)2

2
w1. (A.5)

Hence ψ[1,−1, 1,−1] = ψ[1,−1, 1,−1]0 + ψ[1,−1, 1,−1]2, with

ψ[1,−1, 1,−1]k(v) =
∑
i∈ZN

ψ[i; 1,−1, 1,−1]k(v)〈i|, k = 0, 2.

By (A.3), one obtains

M(v0)o1R = 2
1∑

k=0

ψ[1,−1, 1,−1]2k(v0)ro1ψ[1,−1, 1,−1]2k(−v0)
t

= 2
1∑

k=0

(−1)kψ[1,−1, 1,−1]2k(v0)ro1ψ[1,−1, 1,−1]2k(v0)
t , (A.6)

where ro1 =∑i∈ZN
r2
i,i+1r

2
i+1,i |i〉〈i|.

For o2 (= the class of |1, 1,−1,−1〉), ψ[i; 1, 1,−1,−1](v) = ψ(i, i +1, i +2, i +1, i)(v)

is expressed by

Hi(−v)Hi+1(−v)Hi(v)Hi+1(v)v + �i(−v)�i+1(−v)�i(v)�i+1(v)v′

+ Hi(−v)Hi+1(−v)Hi+1(v)�i(v)|1, 1, 1,−1〉
+ Hi+1(−v)Hi(v)Hi+1(v)�i(−v)| − 1, 1, 1, 1〉
+ Hi(−v)Hi(v)Hi+1(v)�i+1(−v)|1,−1, 1, 1〉
+ Hi(−v)Hi+1(−v)Hi(v)�i+1(v)|1, 1,−1, 1〉
+ Hi(−v)�i+1(−v)�i(v)�i+1(v)|1,−1,−1,−1〉
+ Hi+1(−v)�i(−v)�i(v)�i+1(v)| − 1, 1,−1,−1〉
+ Hi+1(v)�i(−v)�i+1(−v)�i(v)| − 1,−1, 1,−1〉
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+ Hi(v)�i(−v)�i+1(−v)�i+1(v)| − 1,−1,−1, 1〉
+ Hi(−v)Hi+1(v)�i+1(−v)�i(v)|1,−1, 1,−1〉
+ Hi(v)Hi+1(−v)�i(−v)�i+1(v)| − 1, 1,−1, 1〉
+ Hi(−v)Hi+1(−v)�i(v)�i+1(v)|1, 1,−1,−1〉
+ Hi+1(−v)Hi+1(v)�i(−v)�i(v)| − 1, 1, 1,−1〉
+ Hi(v)Hi+1(v)�i(−v)�i+1(−v)| − 1,−1, 1, 1〉
+ Hi(−v)Hi(v)�i+1(−v)�i+1(v)|1,−1,−1, 1〉.

In the basis in (A.4), ψ[i; 1, 1,−1,−1] =∑3
k=0 ψ[i; 1, 1,−1,−1]k where

ψ[i; 1, 1,−1,−1]0(v)

= Hi(−v)Hi+1(−v)Hi(v)Hi+1(v)v + �i(−v)�i+1(−v)�i(v)�i+1(v)v′

+ (Hi(−v)Hi+1(−v)Hi+1(v)�i(v) + Hi+1(−v)Hi(v)Hi+1(v)�i(−v)

+ Hi(−v)Hi(v)Hi+1(v)�i+1(−v) + Hi(−v)Hi+1(−v)Hi(v)�i+1(v))
x0

4
+ (Hi(−v)�i+1(−v)�i(v)�i+1(v) + Hi+1(−v)�i(−v)�i(v)�i+1(v)

+ Hi+1(v)�i(−v)�i+1(−v)�i(v) + Hi(v)�i(−v)�i+1(−v)�i+1(v))
y0

4

+ (Hi(−v)Hi+1(v)�i+1(−v)�i(v) + Hi(v)Hi+1(−v)�i(−v)�i+1(v))
w0

4
+ (Hi(−v)Hi+1(−v)�i(v)�i+1(v) + Hi+1(−v)Hi+1(v)�i(−v)�i(v)

+ Hi(v)Hi+1(v)�i(−v)�i+1(−v) + Hi(−v)Hi(v)�i+1(−v)�i+1(v))
u0

4
,

(A.7)

ψ[i; 1, 1,−1,−1]1(v)

= (Hi(−v)Hi+1(−v)Hi+1(v)�i(v) − iHi+1(−v)Hi(v)Hi+1(v)�i(−v)

+ (−i)2Hi(−v)Hi(v)Hi+1(v)�i+1(−v) + (−i)3Hi(−v)Hi+1(−v)Hi(v)�i+1(v))
x1

4
+ (Hi(−v)�i+1(−v)�i(v)�i+1(v) − iHi+1(−v)�i(−v)�i(v)�i+1(v)

+ (−i)2Hi+1(v)�i(−v)�i+1(−v)�i(v) + (−i)3Hi(v)�i(−v)�i+1(−v)�i+1(v))
y1

4
+ (Hi(−v)Hi+1(−v)�i(v)�i+1(v) − iHi+1(−v)Hi+1(v)�i(−v)�i(v))

+ (−i)2Hi(v)Hi+1(v)�i(−v)�i+1(−v) + (−i)3Hi(−v)Hi(v)�i+1(−v)�i+1(v))
u1

4
,

(A.8)

ψ[i; 1, 1,−1,−1]2(v)

= (Hi(−v)Hi+1(−v)Hi+1(v)�i(v) − Hi+1(−v)Hi(v)Hi+1(v)�i(−v)

+ Hi(−v)Hi(v)Hi+1(v)�i+1(−v) − Hi(−v)Hi+1(−v)Hi(v)�i+1(v))
x2

4
+ (Hi(−v)�i+1(−v)�i(v)�i+1(v) − Hi+1(−v)�i(−v)�i(v)�i+1(v)

+ Hi+1(v)�i(−v)�i+1(−v)�i(v) − Hi(v)�i(−v)�i+1(−v)�i+1(v))
y2

4
+ (Hi(−v)Hi+1(−v)�i(v)�i+1(v) − Hi+1(−v)Hi+1(v)�i(−v)�i(v)

+ Hi(v)Hi+1(v)�i(−v)�i+1(−v) − Hi(−v)Hi(v)�i+1(−v)�i+1(v))
u2

4

+ (Hi(−v)Hi+1(v)�i+1(−v)�i(v) − Hi(v)Hi+1(−v)�i(−v)�i+1(v))
w1

2
,

(A.9)
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ψ[i; 1, 1,−1,−1]3(v)

= (Hi(−v)Hi+1(−v)Hi+1(v)�i(v) + i(Hi+1(−v)Hi(v)Hi+1(v)�i(−v))

+ i2(Hi(−v)Hi(v)Hi+1(v)�i+1(−v)) + i3(Hi(−v)Hi+1(−v)Hi(v)�i+1(v)))
x3

4
+ (Hi(−v)�i+1(−v)�i(v)�i+1(v) + i(Hi+1(−v)�i(−v)�i(v)�i+1(v))

+ i2(Hi+1(v)�i(−v)�i+1(−v)�i(v)) + i3(Hi(v)�i(−v)�i+1(−v)�i+1(v)))
y3

4
+ (Hi(−v)Hi+1(−v)�i(v)�i+1(v) + i(Hi+1(−v)Hi+1(v)�i(−v)�i(v)))

+ i2(Hi(v)Hi+1(v)�i(−v)�i+1(−v)) + i3(Hi(−v)Hi(v)�i+1(−v)�i+1(v)))
u3

4
.

(A.10)
Hence ψ[1, 1,−1,−1](v) =∑3

k=0 ψ[1, 1,−1,−1]k(v) with

ψ[1, 1,−1,−1]k(v) =
∑
i∈ZN

ψ[i; 1, 1,−1,−1]k(v)〈i|, 0 � k � 3.

By (A.3),

M(v0)o2R = 4
3∑

k=0

ψ[1, 1,−1,−1]k(v0)ro2ψ[1, 1,−1,−1]k(−v0)
t (A.11)

where ro2=
∑

i∈ZN
ri,i+1ri+1,i+2ri+2,i+1ri+1,i |i〉〈i|. By (A.6) and (A.11), M(v0)R(= M(v0)o1R+

M(v0)o2R) is expressed by

2ψ[1,−1, 1,−1]0(v0)ro1ψ[1,−1, 1,−1]0(v0)
t

+ 4ψ[1, 1,−1,−1]0(v0)ro2ψ[1, 1,−1,−1]0(v0)
t

− 2ψ[1,−1, 1,−1]2(v0)ro1ψ[1,−1, 1,−1]2(v0)
t

+ 4ψ[1, 1,−1,−1]2(v0)ro2ψ[1, 1,−1,−1]2(−v0)
t

+ 4ψ[1, 1,−1,−1]1(v0)ro2ψ[1, 1,−1,−1]1(−v0)
t

+ 4ψ[1, 1,−1,−1]3(v0)ro2ψ[1, 1,−1,−1]3(−v0)
t , (A.12)

which induces the Vk-endomorphism M(v0)|Vk
R for 0 � k � 3. The non-singular property

of M(v0) will follow from the non-degeneracy of M(v0)|Vk
R for all k. For k = 1, 3, Vk

is three dimensional with the basis in (A.4), by which the three N-cyclic vectors to express
ψ[1, 1,−1,−1]k(v0) in (A.8) and (A.10) are linear independent for a generic v0, and the same
for ψ[1, 1,−1,−1]k(−v0). Therefore, M(v0)|Vk

is a non-singular automorphism of Vk . For
k = 0, by (A.5) and (A.7), there are six N-cyclic vectors in each of ψ[1,−1, 1,−1]0(v0)

and ψ[1, 1,−1,−1]0(v0) for a generic v0. Then by using different quadratic forms of
CN , they form the V0-automorphism M(v0)|V0R. The nonzero determinant of M(v0)|V0R

is expected by direct computation for a given N. Also for k = 2, one can argue the non-
singular property of M(v0)|V2 in a similar manner. For example in the case N = 3, using
Hi(−v) = −H−i−1(v) and �i(−v) = �−i−1(v), one can express (A.5), (A.7) and (A.9) in
terms of Hi(:= Hi(v)),�i(:= �i(v)) for i = 0, 1, 2, then obtains

ψ[1,−1, 1,−1]0(v) = v ⊗ (H 2
0 H 2

2 ,H 4
1 ,H 2

0 H 2
2

)
+ v′ ⊗ (�2

0�
2
2,�

4
1,�

2
0�

2
2

)
+

(
H 2

2 H0�0 − H2H
2
0 �2
)
x0

2
⊗ (1, 0,−1)

+

(−H2�2�
2
0 + H0�

2
2�0
)
y0

2
⊗ (1, 0,−1)

+
w0

2
⊗ (H 2

0 �2
2 + H 2

2 �2
0, 2H 2

1 �2
1,H

2
0 �2

2 + H 2
2 �2

0

)
− u0 ⊗ (H0H2�0�2,H

2
1 �2

1,H0H2�0�2
)
,
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ψ[1, 1,−1,−1]0(v) = (H0H2)v ⊗ (H 2
1 ,H 2

1 ,H0H2
)

+ (�0�2)v
′ ⊗ (�2

1,�
2
1,�0�2

)
+

(H2�0 − H0�2)H
2
1 x0

4
⊗ (1,−1, 0) +

(H2�0 − H0�2)�
2
1y0

4
⊗ (−1, 1, 0)

− w0

4
⊗ (H1�1(H2�0 + H0�2),H1�1(H2�0 + H0�2),H

2
0 �2

2 + H 2
2 �2

0

)
+

(
H0H1�1�2 + H0H2�

2
1 + H1H2�0�1 − H 2

1 �0�2
)
u0

4
⊗ (1, 1, 0),

ψ[1,−1, 1,−1]2(v) = x2

2
⊗ (H0H

2
2 �0 + H 2

0 H2�2, 2H 3
1 �1,H0H

2
2 �0 + H 2

0 H2�2
)

− y2

2
⊗ (H2�

2
0�2 + H0�0�

2
2, 2H1�

3
1,H2�

2
0�2 + H0�0�

2
2

)
+

w1

2
⊗ (H 2

2 �2
0 − H 2

0 �2
2,−2H 2

1 �2
1,H

2
0 �2

2 − H 2
2 �2

0

)
,

ψ[1, 1,−1,−1]2(v) = x2

4
⊗ (H 2

1 H2�1 + H0H
2
1 �2 − 2H0H1H2�1,

H0H1H2�2 + H0H1H2�1 − H 2
1 H2�0 − H0H

2
1 �2,H

2
0 H2�0 − H0H

2
2 �0
)

+

(
H0�

2
1�2 + H2�0�

2
1 − 2H1�0�1�2

)
y2

4
⊗ (−1, 1, 0)

+
u2

4
⊗ (H1H2�0�1 + H 2

1 �0�2 + H0H1�1�2 + H0H2�
2
1,

H1H2�0�1 + H 2
1 �0�2 + H0H1�1�2 + H0H2�

2
1, 4H0H2�0�2

)
+

w1

2
⊗ (−H1H2�0�1 + H0H1�1�2,−H1H2�0�1

+ H0H1�1�2,−H 2
0 �2

2 + H 2
2 �2

0

)
.

Using (A.12), one finds the non-singular M(v0)|Vk
R when v0 is generic for k = 0, 2. For a

general N, the zero-determinant of (A.12) would provide a complicated relation among theta
functions Hi(v)’s and �j(v)’s, which is unlikely to be true. Unfortunately we cannot provide
a rigorous mathematical argument about this statement.
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